One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering.
نویسندگان
چکیده
We characterized the energy band dispersion near the Fermi level in single-walled carbon nanotubes using low-temperature scanning tunneling microscopy. Analysis of energy-dependent standing wave oscillations, which result from quantum interference of electrons resonantly scattered by defects, yields a linear energy dispersion near E(F), and indicates the importance of parity in scattering for armchair single-walled carbon nanotubes. Additionally, these data provide values of the tight-binding overlap integral and Fermi wave vector, in good agreement with previous work, but indicate that the electron coherence length is substantially shortened.
منابع مشابه
Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.
Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the...
متن کاملElectronic Raman Scattering On Individual Semiconducting Single Walled Carbon Nanotubes
We report experimental measurements of electronic Raman scattering by electrons (holes) in individual single-walled carbon nanotubes (SWNTs) under resonant conditions. The Raman scattering at low frequency range reveals a single particle excitation feature. And the dispersion of electronic structure around the center of Brillouin zone of a semiconducting SWNT (14, 13) is extracted.
متن کاملObservation of electronic Raman scattering in metallic carbon nanotubes.
We present experimental measurements of the electronic contribution to the Raman spectra of individual metallic single-walled carbon nanotubes (MSWNTs). Photoexcited carriers are inelastically scattered by a continuum of low-energy electron-hole pairs created across the graphenelike linear electronic subbands of the MSWNTs. The optical resonances in MSWNTs give rise to well-defined electronic R...
متن کاملRaman Scattering in Carbon Nanotubes
The vibrational properties of single-walled carbon nanotubes reflect the electron and phonon confinement as well as the cylindrical geometry of the tubes. Raman scattering is one of the prime techniques for studying the fundamental properties of carbon tubes and nanotube characterization. The most important phonon for sample characterization is the radial-breathing mode, an in-phase radial move...
متن کاملResonant electron scattering by defects in single-walled carbon nanotubes.
We report the characterization of defects in individual metallic single-walled carbon nanotubes by transport measurements and scanned gate microscopy. A sizable fraction of metallic nanotubes grown by chemical vapor deposition exhibits strongly gate voltage-dependent resistance at room temperature. Scanned gate measurements reveal that this behavior originates from resonant electron scattering ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2002